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Abstract – Several general effects of boundary conditions and their adequate description at 

structural dynamic computational simulation constitute the main subject of the discussion. 

First, an analytical model of elastically supported beam was considered to evaluate the effects 

of support compliance to the basic dynamic characteristics. Second, a more complex model of 

a body with elastic support was simulated. Some general properties of structure dynamics 

were analysed. 
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I. INTRODUCTION  

Regardless of the final applied goal, the damage identification in full-scale components of complex 

mechanical systems implies a complete or partial determination of their dynamic properties. 

Frequently, such an adequate solution cannot be obtained by using theoretical analysis only. In these 

cases, an accurate test provides the necessary information to solve the problem of dynamic 

identification [1]. There are a number of research works and developments in mechanical, civil and 

aerospace engineering dedicated to the vibration analysis for different applications. A corresponding 

overview of this information can be found in [2] – [8].  

Usually two types of tests are used in practice: forced and ambient vibration tests. The first of them 

is coupled with the technique of empirical modal analysis (EMA) which is presented in [9]. The EMA 

technique is more complete and accurate. It helps to identify the dynamic properties of a system, but 

requires special equipment to excite vibrations. Despite this, the EMA technique has been used in the 

determination of the dynamic characteristics of even very large structures [10] – [13]. Another 

method – operational modal analysis (OMA) uses output only. It is cheaper and faster than EMA and 

can be easily applied to large structures [14]. 

The computational simulation can be useful for both the test arrangement and interpretation of their 

results. The computational simulation can improve the effectiveness of the analysis and solve the key 

problems of structural health monitoring and dynamic system identification [15] – [18], coupling 

technique [19] and [20], structural integrity [21] and [22], nonlinear dynamics [23], especially, of 

nonlinear aero elasticity [24]. In the practice of designing and production of new rotorcraft, the full-

scale test of the basic prototype is needed before the first flight. This is done due to the requirement 

to reduce the risk of losing a high-cost item and to minimize the risk of the test operator. In such a 

test, the reliability of functioning of all rotorcraft systems should be checked, especially, the control 

system, as well as the strength of the structure at all stages of the flight. However, under the dynamic 

loading the type and parameters of testing equipment can significantly affect the level and distribution 

of stresses and strains, as well as their changes over time. In turn, the planning and preparation of 

these tests requires accurate designing of the test setup, its control system, a preliminary analysis of 

the dynamic behaviour of the system “test setup – object”.  

In this paper, some general effects of the boundary conditions and their adequate description at the 

structural dynamic analysis are the main subjects of the study. Firstly, the paper considers a simplified 

model of the elastically supported beam to evaluate the effects of the support compliance to the basic 

dynamic characteristics. Secondly, a more complex model of the body elastic attachment is discussed. 
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II. ANALYTICAL STUDY 

A. On the Properties of Solutions of the Structural Dynamics of Elastic Systems 

The general solution of the linear dynamic problem of an elastic system is described by a system 

of ordinary differential equations or partial differential equations. Each such set of equations has an 

infinite number of solutions, among which there is a unique solution to a specific problem. It is 

determined by the boundary conditions. In other words, the properties of the external and internal 

constraints are determined by the external supporting and interaction between the parts of the dynamic 

system. For example, for the one-dimensional problem, the number of permanent integration 

coincides with the number of superimposed ties. In the practice of real system analysis, the properties 

of the boundary conditions are often simplified: absolutely rigid supports, perfectly smooth contact 

surfaces (frictionless). These are the so-called classical boundary conditions. Obviously, the real 

systems do not have any classical boundary conditions. In each case, the effects of possible deviations 

should be evaluated. If necessary, the boundary conditions can be described in more detail to provide 

a correct result. 

This paper analyses the ways of obtaining the estimates of the effect of boundary conditions and 

some general regularities of this effect. 

B. Simple Example: A Cantilever Beam With an Elastic Clamping 

 

Fig. 1. A cantilever beam with an elastic rotational support. 

In this example, the analysis of the system permitting a simple analytic solution is carried out. It 

allows to show some general regularities of the effect of boundary conditions to the dynamic 

characteristics of the elastic system. 

The transverse free oscillations of the thin uniform beam with elastic support are analysed.  

The solution of a differential equation of the beam bending allows to obtain the general solution of 

the beam shape 𝑉(𝑥) of the normal vibration mode  

𝑉(𝑥) = 𝐶1 cosh 𝑘𝑥 + 𝐶2 sinh 𝑘𝑥 + 𝐶3 cos 𝑘𝑥 + 𝐶4 sin 𝑘𝑥 ,                       (1) 

where 𝑘 is a root of characteristic equation. 

The integration constants 𝐶1, 𝐶2, 𝐶3, 𝐶4 are defined by the boundary conditions. For the cantilever 

beam (Fig. 1), they can be expressed as follows:  

𝑉(0) = 0,      𝑉′(0) = δ𝐷𝑉′′(0),   𝑉′′(𝑙) = 0,      𝑉′′′(𝑙) = 0.  

This creates a system of four linear homogeneous algebraic equations for determining the integration 

constants 𝐶1, 𝐶2, 𝐶3, 𝐶4. This system has a non-trivial solution if the matrix of coefficients is equal to 

zero. The frequency equation in this case is: 

cosh 𝑘𝑙 cos 𝑘𝑙 + δ̅𝑘𝑙(cos 𝑘𝑙 sinh 𝑘𝑙 − sin 𝑘𝑙 cosh 𝑘𝑙) + 1 = 0,                                  (2) 

where  

δ̅ =
δ

𝑙/𝐷
 is a relative compliance of the support; 

δ  is a rotational compliance of the support; 

𝐷  is a bending stiffness of the cantilever beam cross-section. 

𝑥 
𝑙 

δ 
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The roots 𝑘𝑙 of the frequency equation define the spectra of 

beam eigenfrequencies. 

𝑓𝑛 =
(𝑘𝑙)𝑛

2π𝑙2
√

𝐷

𝑚
 ,                   (3) 

where 

𝑚 is a mass of the beam unit length,  

𝑛 = 1, 2, … is a number of the mode of oscillations.  

In Figure 2, the natural frequencies as the function of 

elastic compliance are presented for the first three modes. A 

monotonic decrease of all natural frequencies is observed. If 

the compliance coefficient tends to infinity (disappearance of 

constraints), the first natural frequency tends to zero, so that the oscillatory form disappears. Higher 

natural frequencies have nonzero limits, and for higher mode the rate of approaching to this limit is 

greater. In other words, if the mode of oscillation is higher, the natural frequency of this mode and its 

shape is less sensitive to a change of the elastic compliance of the support. 

C. Dynamic Properties and Response of the Structure  

Here is presented a general mathematical description of the complex elastic system that can be 

released by computational simulation for practical applications. Some elastic body or system of 𝑚 

bodies in the region 𝑊 = ⋃ (𝑊𝑗)𝑚
𝑗=1  bounded by the external surface 𝑆 are considered. Internal 

constraints are defined on the subbodies contact surfaces 𝑆𝑖𝑗 = 𝑆𝑖 ⋂ 𝑆𝑗 , and the external boundary 

conditions are given on the other part of surface 𝑆. The displacement vector 𝒖(𝒙, 𝑡) is defined by the 

following motion equation: 

𝜌(𝒙)�̈�(𝒙, 𝑡) = 𝐿(𝒖) + 𝒑(𝒙, 𝑡),                                                (4) 

where 

𝐿(𝒖)  is a linear operator of the displacement vector 𝒖(𝒙, 𝑡); 

 𝒑(𝒙, 𝑡) is an intensity of the excitation force;  

𝒙  is a vector of coordinates of a point.  

For example, the operator 𝐿(𝒖) view of isotropic elastic body is 

𝐿(𝒖) = λ grad(div 𝒖) + μΔ𝒖,                                                         (5) 

where 

λ and μ are Lame constants. 

The equation (3) can be resolved by the separated variables method in the following form: 

𝒖(𝒙, 𝑡) = 𝑈(𝒙)θ(t).                                                                         (6) 

This solution exists if the function 𝑼(𝒙) is some eigenmode of the next ordinary differential 

equation: 

𝐿(𝑼) + ω2ρ(𝒙)𝑼(𝒙) = 0.                                                        (7) 

The non-trivial solution 𝑼𝑘(𝒙) (shape of the eigenmode) of equation (9) exists for some spectrum 

of eigenvalues (natural frequencies) ω𝑘 , (𝑘 =1, 2, …). 

At forced oscillation, the dynamic response of an elastic linear dynamic system under some external 

load can be described as a modal decomposition of the displacement vector 𝒖(𝒙, 𝑡) to the basic system 

of functions 𝑼𝑘(𝒙) (k = 1, …, ∞). As a result, the vector of displacements can be presented by series 

Fig. 2. Natural frequencies as functions of 

relative compliance of support. 
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𝒖(𝒙, 𝑡) = ∑ 𝑼𝑘

∞

𝑘=1

(𝒙)θ𝑘(𝑡),                                                   (8) 

where 

θ𝑘(𝑡) is a so-called normal function, which is a solution of the following ordinary differential 

equation: 

𝑀𝑘θ̈𝑘(𝑡) + 𝑀𝑘ω𝑘
2θ𝑘(𝑡) = Φ𝑘(𝑡),                                         (9) 

here 

𝑀𝑘 = ∭ ρ(𝒙)𝑼𝑘 
2 (𝒙)d𝑉,    Φ𝑘(𝑡) = ∭ 𝒑(𝒙, 𝑡)𝑼𝑘(𝒙) d𝑉 is a modal mass of the system 

and a modal force respectively associated with the k-th mode of free oscillations.  

The dynamic response 𝒖(𝒙, 𝑡) at a harmonic excitation by the force 𝒑(𝒙, 𝑡) = 𝒑0(𝒙)𝑒𝑖ω𝑡 can be 

expressed by the following series:  

𝒖(𝒙, 𝑡) = 𝑒𝑖ω𝑡 ∑
𝑼𝑘(𝒙)Φ𝑘0

𝑀𝑘(ω𝑘
2 − ω2)

∞

𝑘=1

,                                          (10) 

where 

Φ𝑘0 = ∭ 𝒑0(𝒙)𝑼𝑘(𝒙)d𝑉  and 𝒑0(𝒙) is an amplitude of modal force.  

III. COMPUTATIONAL SIMULATION OF THE COMPLEX ELASTIC SYSTEM 

The application of simulation for the analysis of the 

dynamic properties of the elastic system (helicopter body) 

is given here. 

Two basic versions of the boundary conditions are 

compared. The first version is a free body of the helicopter 

(Fig. 3) that corresponds to the flight. The second one is the 

same body fixed by a special supporting module (Fig. 4). In 

this case, this module is connected with the floor of the 

cargo compartment. The four beams of the module are 

simulated and fixed by several connection units (Fig. 4, c). 

The tail part of the helicopter was simulated separately, as 

the body component with the smallest stiffness. It was 

assumed that this part was fixed in the contact cross-

section with the centrepiece module of the body.  

 
a)                                                             b)                                                                       c) 

Fig. 4. Fixed body of the helicopter: a) general view of the helicopter body; b) view of the body attachment to the 

supporting module in the multiple nodes of power flow; c) contact areas of the basic beams of the fixed attachment. 

Fig. 3. Non-constrained body of the helicopter. 
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Some results of full-scale simulation, which was performed by the Autodesk Inventor and its in-

build ANSYS are given below for the frequency band upon 20 Hz. The natural frequencies are given 

in Table I. 

TABLE I 

RESULTS OF DYNAMIC SIMULATION 

Free body – – – – – – 8.28 8.66 9.27 12.01 16.25 16.91 19.99 

Fixed body 2.45 3.53 3.96 5.26 6.47 6.9 7.82 8.69 9.8 11.48 14.62 17.42 – 

FTB* – – – – – – 7.96 8.00 – – – – – 
*Fixed tail beam. 

IV. DISCUSSION  

First, the comparison of the natural frequencies 

spectra of the free and elastically fixed helicopter 

allows to see the effect of “eigenfrequencies 

disappearance”. The analysis of this effect is given in 

[25]. It can be seen from Table 1 that the imposition 

of elastic constraints on the test object leads to the 

appearance of six additional eigenfrequencies in 

comparison with an unattached object. This is 

explained by the absence of external constraints of an 

unattached object that causes the conversion of the 

first six modes of oscillations into six non-oscillatory 

modes of motion in accordance with the number of 

degrees of freedom. 

It is important to note that the lower modes of the 

constrained structure are not the pure “rigid body” 

modes. Figure 5 shows the first mode with a natural 

frequency of 2.45 Hz. It is seen that this mode 

combines the lateral translation and rotation with significant deformation of a structure. It follows 

that the imposition of additional links during the full-scale dynamic test can cause the appearance of 

dynamic stresses which is not typical for loading in the flight.  

It should also be noted that there is no complete identity with the dynamic properties of higher 

modes, which are not connected with “rigid body” movements. For example, similar vibration mode 

shapes are for some component of the structure at a test setup and in the flight. For the both cases, 

corresponding eigenfrequencies can be close. But the significant difference of the shapes is indicated.  

Moreover, the isolated rigidly fixed tail part has two natural modes similar to the corresponding 

modes at the full-scale simulation. However, the total number of higher eigenfrequencies in 

practically significant frequencies range is less at fixed supporting. It is also obvious that the 

parametric simulation of the full-scale test structure allows to obtain more adequate dynamic 

characteristics of the “structure – test setup”. 

V. CONCLUSION 

First of all, the practical importance of the dynamic structural analysis to optimize the aircraft can 

be noted. The  of the dynamic characteristics of elastic structures is an effective tool for both the 

structure improvement at designing stage and the rational planning of the full-scale tests of an aircraft 

or its basic components. The importance of an adequate description of the boundary conditions for 

the correct outcome is shown. Some basic regularities of the influence of boundary conditions on the 

Fig. 5. The shape of the 1st mode of the fixed body 

(2.45 Hz). 
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dynamic properties of the elastic dynamic system are illustrated. The simple example shows the 

specific effect of the elastic compliance of constraints. The increase of the elastic compliance of 

supports reduces the natural frequencies. It can be seen that there is some critical compliance of the 

support for higher modes. If the compliance is greater than its critical value, the corresponded mode 

is almost insensitive to the compliance of this constraint. The critical compliance is less for the higher 

mode. In case of disappearance of some constraints, the lower vibration modes also disappear, and 

their number is equal to the number of new degrees of freedom. These properties are common to the 

elastic system of any complexity. 

It should be noted that the computational simulation allows to modify the boundary conditions by 

varying rigidities, masses or damping of the structural system under excitation as well as by producing 

additional forces. This is especially important for adequate dynamic properties when planning 

separate component tests of the structural system [26]. In presented article, analysis is focused to 

comparison different kinds of boundary conditions for the same object. Problem of validation of 

dynamic simulation is considered in the [26]. 
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