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Abstract – The introduction of invasive aquatic species in new environments has been identified 

as one of the four biggest threats to the world's oceans causing serious threats and harm to 

both ecology and human health. There is a major exchange of ship’s ballast water over longer 

distances between continents and regional seas, and it has been known for decades that ballast 

water transfers organisms to new ecosystems, where the strongest, most aggressive and 

adaptable species can survive and become invasive under favourable conditions. The focus of 

the research is to study available ballast water control technologies to determine their 

suitability and effectiveness in the reduction of harmful aquatic organisms and compounds in 

the Baltic Sea. 
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I. INTRODUCTION  

To ensure the buoyancy, stability and manoeuvrability of ships ballast water is required. As the 

ships become more technologically advanced and larger, cargo turnover and, consequently, the 

amount of taken and discharged ballast water increases too. Thus, ship’s ballast water and 

sediments are transferring more harmful organisms [1]. To prevent the spread of such global and 

environmental problem the International Convention for the Control and Management of Ships’ 

Ballast Water and Sediments (BWM 2004) adopted by the International Maritime Organisation 

(IMO) in 2004 entered into force on September 8, 2017. The aim of BWM 2004 is to govern the 

process of ballast water exchange and to reduce the risk of invasive aquatic species.  

On June 20, 2018 the Saeima of the Republic of Latvia passed the law stating that BWM 2004 in 

Latvia will come into force on January 11, 2019 [2]. 

Based on the requirements and guidelines stated by BWM 2004, a ballast water and sediment 

treatment system should be installed on ships by September 8, 2024 latest. In addition, it is 

important to underline that BWM 2004 does not define specific water treatment technologies. 

Eventually, shipowners have to make a decision to choose among the technologies that already 

have stable market position or to choose technology recently introduced to the shipping industry 

and will eventually take advantage of the obsolete technologies considering the ship 

specifications, technological solutions, costs and environmentally friendly features [3]. 

Therefore, the study of evaluation of treatment methods to ship ballast water is relevant.  

II. THE CONTROL AND MANAGEMENT OF SHIP’S BALLAST WATER AND SEDIMENTS 

Species are more likely to become established in environments that are similar to those of their 

origin. The risk of a species introduction is relatively high if the port of loading and the port of 
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discharge are ecologically equal. However, if habitats from freshwater and estuarine conditions 

are transferred to marine areas, the most important factor for species to be introduced is not only 

the salinity but also climate [4]. Besides, it is estimated that world seaborne trade will increase 

by 3.8 % in 2018–2023. With total volumes reaching 10.7 billion tons in 2017, it is clear that 

ballast water intake and discharge will also increase in the future [5]. In order to prevent possible 

catastrophic consequences caused by harmful aquatic organisms which are introduced by ballast 

water, the BWM 2004 stipulates two standards for discharged ballast water. The D–1 standard 

accepts ballast water exchange at least 200 nautical miles from land and at least 200 metres in 

depth by following methods: 

1. sequential – a ballast tank intended for the carriage of ballast water is emptied and then refilled 

with water to achieve at least a 95 % volumetric exchange; 

2. flow-through – replacement ballast water is pumped into a ballast tank intended for the carriage 

of ballast water, allowing water to flow through overflow or other arrangements; 

3. dilution – replacement ballast water is filled through the top of the ballast tank intended for the 

carriage of ballast water with simultaneous discharge from the bottom at the same flow rate and 

maintaining a constant level in the tank throughout the ballast exchange operation [6]. 

The D-2 standard specifies that ships can only discharge ballast water that meets the following 

criteria:  

− < 10 viable organisms per cubic metre which are greater than or equal to 50 micrometres 

in minimum dimension;  

− < 10 viable organisms per millilitre which are between 10 micrometres and 50 micrometres 

in minimum dimension;  

− < 1 colony-forming unit (cfu) per 100 millilitres of Toxicogenic Vibrio cholerae; 

− < 250 cfu per 100 millilitres of Escherichia coli and 

− < 100 cfu per 100 millilitres of Intestinal Enterococci [6]. 

Despite the fact that the Baltic Sea is one of the largest brackish seas, requiring greater species 

adaptability, besides biodiversity is low because of high salinity for freshwater organisms to live 

and vice versa, it does not guarantee protection from foreign species [7]. Baltic Marine 

Environment Protection Commission – Helsinki Commission (HELCOM) and AquaNIS database 

provides the most comprehensive statistics on the introduction of alien species in the Baltic Sea. 

The cumulative number of non-indigenous species in the Baltic Sea prior to 1840 to 2016 has 

reached 132 species of which 61 % are established by shipping and only 39 by other reason than 

shipping [8]. 

To perform ballast water exchange Regulation B–4 of IMO G6 Guidelines requires specific 

depth and distance from the shore as ballast water can only be discharged at least 200 nautical 

miles from the nearest land and in water at least 200 meters in depth, and if it is not possible – as 

far as from the nearest land but at least 50 nautical miles from the nearest land and in water at 

least 200 meters in depth. However, such depth and distance cannot be met anywhere in the Baltic 

Sea, therefore special areas for water exchange could be designated following the IMO Guidelines 

G14 [9]. In accordance with Regulation B–4.2 sea areas where the distance from the nearest land 

or the depth does not meet the parameters, the port State may designate areas where a ship may 

conduct ballast water exchange [10]. However, HELCOM has concluded that most of the alien 

species in the Baltic Sea have a wide tolerance in salinity, so it was agreed that ballast water 

exchange is not a suitable option within the Baltic Sea Region [9], so the only option to comply 

with BWM 2004 requirements is either port based or shipboard ballast water treatment. 

III. BALLAST WATER TREATMENT TECHNOLOGIES 

It is possible to use two main methods to treat ballast water and sediments: physical separation 

and disinfection. Physical or solid-liquid separation is a process where suspended solid material, 

in this case the larger suspended microorganisms, are separated from the ballast water, either by 
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sedimentation when solids settle out by their own weight or by surface filtration when organisms 

are removed by virtue of the pores in the filtering material being smaller than the size of the 

particle itself [3]. In the systems already produced on the first stage of mechanical particles’ 

removal filters are designed as pre-treatment to remove organisms and organic particles of more 

than 50 µm. Significant benefit of filter is the reduction of sediment which can interfere with 

treatment, e.g., by reducing optical transmission in UV treatment afterwards. Filters used in 

second stage for mechanical ballast water treatment are commonly rated with a nominal pore size 

in the range more than 10 µm and up to 50 µm [11]. Hydrocyclone filters on the other hand are 

hydro-dynamically designed creating centrifugal forces generated by cyclonic flow to separate 

particles that are denser than water and do not provide a mechanical barrier to stop particles. 

Hydrocyclones have been used on ballast water treatment systems, but not commonly [3].  

Hydrocyclone filters on the other hand are hydro-dynamically designed creating centrifugal 

forces generated by cyclonic flow to separate particles that are denser than water and do not 

provide a mechanical barrier to stop particles. Hydrocyclones have been used on ballast water 

treatment systems, but not commonly [3]. 

Since both the hydrocyclone and filters are more effective for larger particles to increase the 

efficiency of the methods, pre-treatment with coagulant can be used before these processes, allowing 

the water-soluble substance as well as the colloidal particles to be lowered in principle, and the 

particles collected. Iron or aluminium salts (chlorides, sulphates) are used as coagulants. Aluminium 

sulphate Al2(SO4)3 × 18 H2O can be considered as the most commonly used coagulant. When this 

substance enters the water, an aluminium ion hydrolysis process occurs, resulting in the formation of 

aluminium hydroxides and its polymers. These substances are poorly soluble and the hydrolysis 

process consists of a flocculent precipitate – flocculates [12]. 

Disinfection removes and/or inactivates micro-organisms in two ways. Oxidising biocides are 

general disinfectants which act by destroying organic structures, such as cell membranes or 

nucleic acids but non-oxidising biocides interfere with reproductive, neural, or metabolic 

functions of the organisms. For the destruction of organisms with non-oxidizing biocides, only 

menadione and vitamin K and its derivatives are used as they produce toxic by-products. 

Although they are often used in catfish farming and produced synthetically for commercial use, 

they are also relatively safe to store. For ballast water treatment with oxidising biocide mainly 

chlorination, electrolysis, ozonation and other methods are used [3]. 

Electrolysis is based on the partial electrolysis of NaCl which is present in seawater. Seawater 

flowing through an unseparated electrolytic cell and exiting it creates a mixture of seawater, 

sodium hypochlorite, hydrogen gas, and hypochlorous acid. Electrolysis of sodium chloride 

solution (seawater in this case) is the passage of direct current between an anode and a cathode 

to separate salt and water into their basic elements. Chlorine generated at the anode immediately 

forms sodium hypochlorite and hypochlorous acid – the water disinfectants [12]. 

Ozone is considered as more effective disinfectant than chlorine. For disinfection of water, 

ozone is obtained by injecting clean and cool air in the electric discharge area. The ozone-enriched 

air is then injected into the water to be cleaned. Both ozonation and electrolysis produce 

significant oxidizers such as bromine (hypobromic acid and hypobromite, HOBr / OBr-) and 

chlorine (hypochlorous acid and hypochlorite, HOCl / OCl−), which are active as a destroyer o f 

organisms. The main drawback of ozonation is that this technology is significantly more 

expensive than chlorination of water [13]. 

Hydrodynamic cavitation as physical and chemical effect method is based on creation of high 

temperature and pressure shock waves in combination with generation of highly reactive hydroxyl 

radicals. Shock waves cleavage the molecular bonds as well. As a result, the free radicals oxidize 

into organic pollutants, extreme temperatures or hot spots can also create pyrolysis of the 

molecules if they are in the vicinity of the collapsing cavity [14]. 

It has been proved that light is not only able to disinfect and detoxify, but also to speed up the 

process with a catalyst or semiconductor called photocatalysis. Photocatalysis is a chemical reaction 
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induced by absorption light by a photocatalyst. With solid photocatalyst, the reaction is activated by 

absorption of a photon with sufficient energy, i.e. equal or higher than the band-gap energy of the 

photocatalysts. Various semiconductors such as TiO2, CdO, ZnO, WO3, CdS, CdSe, GaP, GaAs, ZnS, 

SnO2, Fe2O3, SrTiO3, BaTiO3 etc, have been used as photocatalysts. Generally, the best 

photocatalytic performances are obtained with titanium dioxide as catalyst [15]. Materials used for 

photocatalysis cannot be toxic, they have to be stable and they must be integrated in thin films to 

avoid secondary pollution. Pristine TiO2 is almost the single material occupying 95 % from 1 billion 

market of photocatalysis. To activate TiO2, UV light is used, and sunlight contains only 4 % UV.  

α-Fe2O3/Ca2Fe2O5 photocatalyst system provides the same oxidation power as TiO2 to destroy 

persistent organic pollution, but our system can be driven by visible light (sunlight) [16], therefore it 

can be potential disinfectant in ballast water treatment. 

IV. ANALYSIS OF ASPECTS AFFECTING THE EFFICIENCY OF BALLAST WATER TREATMENT 

For shipowners the choice of ballast water and sediment control technology and later the choice of 

the system is a critical decision, often not fully accessed and in fact based on an assessment of 

complex factors as they mainly rely on economic grounds. Before considering any treatment method 

and technology, it is necessary to evaluate the key factors of water quality. The water pumped into a 

ship’s ballast water tanks can vary considerably, and consequently will affect separate ballast water 

treatment systems in different ways. Specific water characteristics may limit a system’s ability to 

comply in this situation, for example, can lead to consumption of more power. Four water 

characteristics are particularly important: salinity, temperature, ultraviolet transmittance and pH. 

Most ports are exposed to river run-off, which means their average salinity levels are generally 

lower than that of ocean water and can be impacted by temperature, climate, season and other factors. 

[17]. Since bromine and chlorine compounds are formed in the ozonation process, the salinity of the 

water also affects the efficiency of this system. Ozone in saline water decomposes faster than in fresh 

water, for example, if the salinity is 32 practical salinity units (PSU), then with 2 ppm ozone, it 

decomposes in 30 seconds, but if the salinity is only 5 PSU, then in 180 seconds, while cavitation, 

deoxygenation and UV irradiation are those methods that are not affected by salinity [18].   

Surface water is warmed by solar radiation decreasing in distance from the equator meaning 

that the warmest water is located closer to the equator, while the coldest water is found at the 

poles. This effects on board disinfection because lower water temperatures exponentially increase 

the amount of energy needed to produce the hypochlorite disinfectant. Optimal water temperature 

for successful treatment is above 15 °C, with normal low-end temperatures in the range between 

10 °C and 17 °C. Water below 10 °C significantly reduces the formation of chlorine, which means 

preheating is needed to ensure effective compliance of ballast water treatment [17].  

Not only UV transmittance but also turbidity impact on treatment process. Dissolved matter in 

the water causes light intensity to decrease exponentially with distance from the source. While 

UV transmittance in seawater is generally high, it tends to be lower in coastal waters where it can 

range from 90 % down to 60 % but can sometimes fall to even 50 % [17]. 

In ballast water purification systems using chlorination, the efficacy is determined by the pH or 

temperature of the hydrogen ion concentration. Neutral pH (6.5 to 7.5) produces the maximum 

amount of hypochlorous acid, but if the pH of the water is too low (pH < 6.0), chlorine will be released 

as gas, reducing efficiency and increasing corrosion of the machine. If chlorine is added to alkaline 

water (pH > 8.5), the amount of hypochlorous acid will decrease significantly and the water will not 

be disinfected. If the pH is too low, water can be buffered with lime (CaO). If the pH is too high, it 

can be reduced with sulphuric acid (H2SO4). It follows from the above that pH affects the systems 

undergoing chemical disinfection – chlorination, electrolysis, ozonation and coagulation, and 

flocculation, while UV irradiation, cavitation and deoxygenation have no effect on pH [18]. 
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V. CONCLUSIONS 

Despite the fact that the Baltic Sea is a saltwater sea with low biodiversity, it is not protected 

from alien species, as it has been established that the number of alien species introduced as a 

result of shipping has already reached 132 species, one of the largest indicators of the world. seas. 

As the requirements of D–1 can only be met in the Baltic Sea in a relatively small area, a 

transitional period is required under D–2 for the installation of a ballast water and sediment 

treatment plan, which is an inevitable step to comply with the conventional rules. To achieve the 

best results the most appropriate system for control of ballast water and sediment includes four 

combined treatment methods, namely: 

1. Filtration by mechanical sieve for removal of larger objects and organisms; 

2. Coagulation and flocculation for faster settling of larger organisms and particles in the lower 

layers of water; 

3. Filtration using a membrane filter to remove organisms and particles larger than 50 μm; 

4. UV irradiation as disinfection method to destroy the remaining living organisms. 
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