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Abstract – Development of the inspection programme of 
fatigue-prone aircraft construction under limitation of airline 
fatigue failure rate. The highest economical effectiveness of 
airline under limitation of fatigue failure rate and failure 
probability is discussed. For computing is used exponential 
regression, Monte Carlo method, Log Normal distribution, 
Markov chains and semi-Markov process theory. The minimax 
approach is offered for processing the results of full-scale fatigue 
approval test of an airframe. Fatigue crack parameters and 
numerical examples are given and explained. 
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I. INTRODUCTION 

The fatigue failure probability (FFP) of fatigue-prone 
aircraft (AC) and fatigue failure rate (FFR) of airline (AL) are 
problems of high priority. A lot of papers and books examine 
these problems and offer possible solutions [1] – [9] where the 
Markov chains (MC) and semi-Markov process with reward 
(SMPW) theories [10] – [12] are offered to solve these 
problems, using exponential approximation of fatigue crack 
size growth function, (1) where  , Q  are parameters of 
fatigue crack trajectory (PFCT).  

( ) exp( )a t Qt  (1) 

The value   is called the equivalent initial flow size 
(EIFS). (Note, it is not a real initial flow size; it is only a 
parameter of exponential approximation of fatigue crack 
trajectory!) The value Q  defines the speed of fatigue crack 
size growth on a logarithmic scale: log( ( )) loga t Qt  . 
PFCT are random variables. It is supposed that the cumulative 
distribution function (cdf) of the vector ( , Q ) is known, but 
a certain parameter of this cdf,   is not known. Estimation of 
  and the choice of inspection programme under condition of 
limitation FFP up to a specified life (AC retirement age), SLt , 
or limitation of FFR of AL can be achieved using minimax 
processing of results of observation of some random fatigue 
cracks during AC type full-scale fatigue approval test. A 
specific feature of the approval test is a decision to redesign 
the new AC type if some reliability requirements are not met. 
In [1], it was assumed that   was some constant. In this 
paper this assumption is eliminated. 

II.  MINIMAX CHOICE OF INSPECTION PROGRAMME 

Despite all the simplicity, formula (1) gives us a rather 
comprehensible result in the interval ( , )d ct t , where td is a 

time when the crack becomes detectable [13-15] ( ( )d da t a ) 

(2) and tc is a time when the crack reaches its critical size 
( ( )c ca t a ) (3) and fatigue failure takes place (see Fig. 1).  

 
Fig. 1.  Exponential approximation of fatigue crack. 

(log log ) / /d d dT a Q C Q    (2) 

(log log ) / /c c cT a Q C Q   .  (3) 

Let us denote logX Q  and log cY C , 

where log logc cC a   . From the analysis of the fatigue 

test data it can be assumed that log log logc cT C Q   is 

distributed normally. It results from the additive property of 
the normal distribution that can take place if either both log cC  

and logQ  are normally distributed or if one of these 

components is normally distributed, while the other is 
constant. Contrary to [1], in this paper we consider the first 
case: vector ( , ) (log( ),log( ))cX Y Q C  has two-

dimensional normal distribution with vector-
parameter ( , , , , )X Y X Y r     . It is worth noting that for 

the case when ca  and da  are constants, cdf of dC  is 

completely defined by the distribution of cC  because 

,  where  =log( / ).d c c dC C a a   When   is known, 

there are two decisions 0d  and 1d : the aircraft is good 

enough and the operation of this aircraft type can be allowed 

( 0d ) or the redesign of aircraft should be carried out ( 1d ). In 

case of the first decision, vector 1( ,..., )nt t t


, where it  is the 

time moment of i-th inspection, should also be defined. If  is 
known the different rules can be offered for the choice of 

structure of vector t


: 1) every interval between inspections is 
equal to / ( 1)SLt n  , 2) probability of failure in every interval 

cT

dT
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is equal to ( ) / ( 1)C SLP T t n  … In this paper we suppose 

that (just as in the above-mentioned examples) vector t


 is 

defined by means of fixed SLt  and choice of n .
 

To substantiate the choice of inspection number, we should 
know FFP of AC and FFR and gain (GL) of AL as functions 
of n . For this purpose, the process of operation of AC can be 
viewed as absorbing MC with ( 4)n   states. States 

1 2 1, ,..., nE E E   correspond to AC operation in time intervals 

0 1 1 2[ , ),[ , ),...,[ , )n SLt t t t t t , and states 2nE  , 3nE  , and 4nE   

are absorbing states: AC is discarded from service when SL is 
reached or there is a fatigue failure (FF), or fatigue crack 
detection (CD) takes place (see Fig. 2). 

 

Fig. 2.  Transition probability matrix 
ACP . 

In the transition probability matrix, ACP , for corresponding 

process of AC operation let the probability of crack detection 

during the inspection number i be denoted as iv (6); 

probability of failure in service time interval 1( , ]i it t t be 

denoted as iq  (5) and probability of successful transition to 

the next state as iu (6). In our model we also assume that an 

aircraft is discarded from service at SLt  even if there are no 

cracks discovered by inspection at time moment SLt . This 

inspection at the end of (n+1)-th interval (in state En+1) does 
not change reliability but it is carried out in order to know the 
state of an aircraft (whether there is a fatigue crack or there is 
no fatigue crack). It can be shown in equations (4-6) where ai, 

gai, bi, gbi, X y , X y  is defined in equations (7-12)  

1

1 1

( | )

( / ) / ( / ) / ,
i d i d i

d i d i i i

u P T t T t

P Q C t P Q C t a a


 

   

   

 (4) 

1 1

1

1 1

( | )

0, / ,
  1,..., 1,

/ , / ,

i i d c i i

i c d i

i i i c d i

q P t T T t Td t

if t C C t
i n

b a if t C C t

 



 

     


   

 (5) 

1i i iv u q   , (6) 

where 

 
ln

( / ) ( ) ,Y
i d i ai

Y

y
a P Q C t g y d






  
    

 


 (7) 

  
( / )

log log
,

ai d i

y
i X y

X y

g P Q C t

e t 



  

   
  
 
 

 (8) 

1( / / ),i c i d ib P C t Q C t     (9) 

 1log log log log( ) log ,c i c iP C t Q C t      
 

 
ln

( ) ,Y
bi

Y

y
g y d






  
  

 


 

  

 

1log log
0,

( ) max ,
log

y
i X y

X y

bi

i X y

X y

e t

g y
y t

 







    
 
 

 
         

 (10)

 

 ,X
X y X Y

Y

r y
  


  
 (11) 

21 .X y X r  
 (12)

 

These probabilities can also be calculated using the Monte 
Carlo method (13). Equation (14) can be used for modelling 

r.v with some coefficient of correlation r where r.v. 1  and 

2  have the standard normal distribution. 

2log ~ ( , )c Y YY C N   , 2log ~ ( , )X XX Q N     (13) 

1 ,Y YY     2
1 2 1X X XX r r          (14) 

Let us recall that in the matrix, ACP , there are three units in 

three last lines in a diagonal matrix because states 2nE  , 

3nE  , and 4nE   are absorbing states: AC is discarded from 
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service when SL is reached or there is a fatigue failure (FF), or 
fatigue crack detection (CD) takes place.  

In the corresponding matrix for operation process of AL, 
states 2nE  , 3nE   and 4nE   are not absorbing ones and 

correspond to return of MC to state 1E (AL operation returns 

to the first interval). The other lines of ACP  and ALP  are the 

same. 
For SMPW version of problem, by using ALP  we can 

obtain the airline gain (15), where ),...,( 41  n  is the 

vector of stationary probabilities, which is defined by (16) 

4

1

( ) ( )
n

i i
i

g n g n




 
 (15) 

4

1

,    1
n

i
i

P  




    (16)
 

,    1,... 1,
( )

,    2,..., 4,
i i i i i i

i
i

a u b q c v i n
g n

d i n n

      
    

 (17) 

AL operation rewards are defined in (17), where ɑi is the 
reward related to a successful transition from one operation 
interval to the next one and the cost of one inspection; bi, ci 
and di are related to the transition to states En+3 (FF), En+4 

(CD) and E1. Let us note that if a=b=c=1, d=0 time transition 
to state E1 equals zero, then πtj= πjgj (n)/g(n) defines the time, 
which is spent by SMP in state Ej j=1, …., n+1, Ljg(n)/πj 
defines the mean return time for state Ej. 

Specifically, 3nL   is the mean time between FF; so 

31 /F nL   is FFR. It is also worth mentioning that the 

same value can be calculated in another way. This value is 

equal to the ratio of aircraft failure probability, Fp , to the 

mean life of a new aircraft, 1 1( ) /L g n  (the mean time of 

renewal of AC (renewal operation of AL in the first interval)). 
There are two versions of reliability requirements: A) 

limitation of FFR of AL; and B) limitation of FFP of AC. We 
will thoroughly consider case A. If  is known, we calculate 
the gain as a function of n , ( , )g n  , and choose 

number gn corresponding to the maximum of gain. Then we 

calculate FFR as a function of n , ( , )F n  , and choose n  

in such a way that for all n n  function ( , )F n   will be 

equal to or less than some value FD  (the “designed” FFR) 

(18). Finally, we choose inspection number n (19). 

 
( , )

min : ( , ) ,   for all ( , )
FD

F FD FD

n

n n n n




 

    



  
 (18) 

( , ) max( ( ), ( , ))g FD g FDn n n n        (19) 

However, we do not know   and we can get only some 

estimate of this parameter, ̂ . Then, first of all, we should 

define some part of parameter space
 0  in such a way that if 

0̂   then redesign of AC should be carried out. 

If instead of ( , )g FDn     we use ˆˆ ( , )g g FDn n     

then real intensity FFR will be a function of random variable, 

ˆ( , )F gn   . Let us define 0
ˆ( , , )F FD    ˆ( , )F gn    if 

0
ˆ  

 
and 0

ˆ( , , ) 0  F FD     if 0
ˆ   (service of 

this type of AC is not allowed). The corresponding expected 
value of FFR as a function of   has its maximum because in 

case of “bad ̂ ” we redesign an airframe, but in case of “very 

good ̂ ” we do not need any inspection. 

Let us denote by *
0( )FD   the solution to (20) (if there is 

the solution to this equation for specific 0 ), where wλ (21) is 

‘required FFR’ defined by specific aviation regulations. 

*
0sup ( , , )FDw


      (20) 

0 0
ˆ( , , ) { ( , , )},FD F FDw E        *  (21) 

0

0

ˆ 0 0

( , , )

{ ( ( , ), )*

ˆ ˆ* ( | )} ( ).

FD

F g FD

w

n x

dF x P







 

  

 



 



 

  (22) 

0

1

1 0
1

( , , )

ˆ ˆ ˆ( ( ) ( ), ) ,

p FD

n

i d c i
i

w p

P t T T t



  





 

    
  (23) 

 
( , )

min : ( , ) ,   for all ( , ) ,

p FD

F FD p FD

n p

n p n p n n n



 



  
  (24) 

If after the approval test we see that 0̂  then required 

inspection number * ˆ( , )g FDn n    . In a similar way the 

choice of n  can be made for case B. Instead of (22) where 

ˆ (.)F


is cdf of̂ , the following p-set function [1] should be 

used (23), where 0 10,   ,n SLt t t  ( )it  , ˆ1,..., gpi n , 

ˆˆ max( , ( , )),gp g p FDn n n p   FDp is “designed” as allowed 

FFP of AC, which is used for the choice of pn  (24), function 

( , )Fp n   defines FFP of AC for specific n and  . 
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TABLE I 

FATIGUE CRACK PARAMETERS 

No. Crack # Ln (a0) Q X=Ln(Q) Y=lnCc 

1 75 -1.2513 1.86E-04 -8.58976 1.905519 

2 92 -1.8768 1.95E-04 -8.54251 1.994482 

3 93 -1.2445 1.61E-04 -8.73411 1.904507 

4 116 -1.697 2.20E-04 -8.42188 1.96971 

5 112 -1.5102 2.07E-04 -8.48279 1.943306 

7 77 -2.5329 2.28E-04 -8.38616 2.080003 

8 78 -0.6479 1.54E-04 -8.77856 1.81148 

10 129 -1.4226 1.57E-04 -8.75926 1.93068 

 Average -1.5229 0.000189 -8.5868804 1.942461 

 StdDev 0.5480844 2.9E-05 0.1551287 0.077889 

 CORREL r  0.796 

III.  NUMERICAL EXAMPLE 

In Table 2.1 of [1] some a priori information about a fatigue 
crack growth function is provided. Using this information for 

ca  =237.8 mm and da =20 mm (these value have already 

been used in [1]) we get the following estimate of parameter 
ˆ ˆ ˆ ˆ ˆ ˆ( , , , , )X Y X Y r     = (-8.587, 1.942, 0.155, 0.0779, 

0.796) (see Table I). It is supposed that all inspection intervals 
are equal. The following definition of components of AL 
income is used: for all 1,..., 1i n   

0( ) ( ) ,  i insp SLa a n a n d t  
 

where 0 01( ) / ( 1)SLa n a t n   

is the reward related to a successful transition from one 
operation interval to the next one; 01a defines the reward of 

operation in one time unit (one hour or one flight); insp SLd t is 

the cost of one inspection (a negative value), which is 
supposed to be proportional to SLt ; 01i SLb b t  is related to 

FF (a negative value), 01 0 ( )ic c a n is the reward related to 

transitions from any state 1 1,..., nE E   to state 
4nE  (it is 

supposed to be proportional to 0a because it is part of 0a ); 

01i SLd d t is a negative reward, the absolute value of which is 

the cost of new aircraft acquisition after events SL, FF or CD 
and the transition to 1E . In the numerical example we have 

used the following values (see Table II).  

TABLE II 

ECONOMIC PARAMETERS 

Symbol Event Values 

01b  Transition to state 3nE  (FF) 
-3 

inspd  
Inspection cost - 0.05 

01a  
Reward related to a successful transition 
from one operation interval to the next one 

1 

01c  Transition to state 4nE  (CD) 
0.05 

01d  Transition to state 1E  
- 0.3 

Set 0  is defined in the following way: the redesign of the 

AC type should be carried out if an estimate of mean AC life 
is small ( c SLT t ) or a speed of fatigue crack growth is large 

( ˆlogQ +X X   ). For FD =0.0000001 in Fig. 3a the results 

of calculation of 0( , , )FDw     and corresponding Fig. 3b 

(25),
 

where 0 10,   ,n SLt t t  ( )it  , ˆ1,..., gi n  , 

ˆˆ ( , )g g FDn n    , as a function of X  for ( 1 5,...,Y Y  )= 

(1.55, 1.75, 1.94, 2.14, 2.33) in the vicinity of its maximum 
are shown. 

 

0

1

1 0
1

( , , )

ˆ ˆ ˆ( ( ) ( ), ) 

p FD

n

i d c i
i

w

P t T T t

  

  





 

    
 (25) 

It is supposed that vector ( , , )X Y r   is the same for 

different vectors ( , )X Y   and it is equal to the test estimate 

(0.155128668, 0.0778895, 0.796437). (Let us recall that 
( )Y X   is equal to (log( ))).CE T   
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Fig. 3a.  
0( , , )FDw     as a function of 

X .  

-9.5 -9 -8.5 -8 -7.5
0

1

2

3

4

5

6

7

8
x 10

-4

mX

pf
a

ilu
re

 

 
mY1
mY2
mY3
mY4
mY5

 

Fig. 3b.  
0( , , )FDw     as a function of 

X .  
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Maximum value of 0( , , )FDw     is equal to 1.523*10-7. 

Maximum value of 0( , , )p FDw      is equal to 0.000677. 

Let us suppose that these values satisfy the requirements: 
required FFR of AL and required FFP of AC. Now let us 

suppose that in a real test we have got ˆ X = -8.5885, 

ˆY =1.942460769 (see Fig. 4). (These values have already 

been considered in [1]). After calculating FFR and airline gain 
(see Fig. 5), for these specific parameters we find a required 
number of inspections: max( , ) max(3,4) 4gn n n   . It 

appears that the influence of scatter of EIFS,  , is very 
significant. After similar calculations of 

0( , , )FDw    as a 

function of X  for 0.00001Y  , 0r   we get its maximum 

value equal to 81.87*10 . It is nearly 10 times lower than in 
the previous case (when Y =0.0778895). Therefore, it is very 

important to take into account the scatter of EIFS,  . 
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Fig. 4. Example of fatigue crack size as a function of flight number. 
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Fig. 5a.  Airline gain as a function of inspection number for specific ˆX = -

8.5885, ˆY =1.942460769. 
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Fig. 5b.  FFR as a function of inspection number for specific ˆX = -8.5885, 

ˆY =1.942460769. 

IV.  CONCLUSIONS 

Here is shown as the full-scale fatigue approval test of an 
airframe can be used for aircraft inspection program develop, 
based not only on limitation of fatigue failure rate, but extends 
to the economic analysis of results the best likelihood is 
achieved using minmax method.  
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