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Abstract – The paper contains the analysis of basic features 
characterizing the development and modernization of micro-class 
unmanned aerial vehicle (UAV) performance characteristics. The 
UAV is mainly used for environmental monitoring and for the 
monitoring of different industrial facilities. The study offers the 
ways of modernizing the UAV embodiment. It considers the 
methodology for improving UAV aerodynamic and structural 
characteristics by using modern calculation methods. The study 
also includes a theoretical investigation and computer simulation 
of aerodynamic characteristics. 
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I. INTRODUCTION 

The design of an unmanned aerial vehicle (UAV) [1] should 
take into consideration a number of specific requirements, 
including the requirement for providing a flexible 
manufacturing technology, reliable and safe operation, 
environmental safety, etc. The first of the above-mentioned 
factors implies the possibility of mass, easy to re-equip 
production of multi-purpose UAVs differing by their 
embodiment, mass, arrangement, and functions to be 
performed. In this case, the design must consist of separate 
modules made as interchangeable parts and units. Separate 
parts should be manufactured by using cutting edge 
technologies and machining facilities.  

The UAV developed at the Institute of Aeronautics of Riga 
Technical University complies with the above requirements. 
The created UAV system has been successfully applied to 
perform different tasks in accordance with its specification 
and has shown high operational efficiency [2], [3]. The system 
has completely confirmed in practice the underlying technical 
and operating characteristics [3]. However, the performance of 
some operations required a vehicle of the same class with 
better performance characteristics. Design and manufacturing 
of a prototype model of the given UAV type with improved 
characteristics need time, resources and other expenses; 
therefore, an attempt was made to carry out modernization on 
the basis of the existing prototype to obtain improved 
characteristics such as flight time, permissible takeoff weight, 
improved characteristics of using disposable load. 

II. THE ANALYSIS OF ACTUAL UAV CHARACTERISTICS AND 

MODERNIZATION CHARACTERISTICS 

The developed UAV is based on a classical design with an 
electric thrust motor. The original UAV design is provided 
with special compartment for carrying disposable load 
(Fig. 1). 

 
Fig. 1. Layout drawing of UAV. 

The designed UAV is characterized by the following key 
features: 
 maximum takeoff weight – 2.5 kg; 
 flight duration – up to 1 hour; 
 flight altitude – up to 3 km; 
 useful load – up to 1.5 kg; 
 engine type – electric. 

The UAV design includes different innovative materials 
such as combination of polystyrene materials, composite 
materials on the basis of carboxylic and Kevlar fabric. The 
main bearing structures of the UAV are made of extra strong 
carboxylic tubular members. The centre section has partially 
stressed skin, which makes it possible to enhance the UAV 
structural strength and stiffness in general as well as reducing 
the weight of basic load-bearing elements. 

The UAV is able to carry out environmental monitoring, 
define the location of different object and targets with high 
accuracy, map seats of fire and areas of environmental 
pollution. One of the substantial drawbacks of the system is a 
limited angle of surveillance camera rotation – the camera can 
turn within the range “down – sideways – to the left” in the 
direction of flight without covering the right field of view [4]. 
For the modernization of the system, the following 
characteristics were taken: 
 maximum takeoff weight – 2.7 kg; 
 flight duration – up to 1.5 hours; 
 flight altitude – up to 3 km; 
 useful load – up to 1.5 kg; 
 engine type – electric; 
 angle of camera rotation – 180°. 
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III. THE ANALYSIS OF POSSIBLE METHODS FOR 

MODERNIZING THE UAV PROTOTYPE 

As it can be seen, the main objectives of modernization are 
flight duration, which can be achieved either by reducing the 
UAV takeoff weight or by installing a power battery of 
increased capacity. The first variant is unacceptable because 
the existing prototype already has a design with the weight 
that is optimized to the maximum, and the takeoff weight can 
be reduced only by adding disposable load with worse 
characteristics. The most acceptable variant is the one with an 
improved power plant that includes a power battery of 
increased capacity and a more powerful motor. Another 
method of improving the characteristics of the power unit is 
increasing the engine operating voltage, which leads to the 
increase in propeller revolutions. However, this variant will 
inevitably result in the increase in UAV prototype takeoff 
weight at least by 0.2 kg. Consequently, it is necessary to 
reconsider the aerodynamic characteristics of planes and 
choose the optimal design. 

IV. CALCULATION AND ANALYSIS OF PLANE 

AERODYNAMICS FOR UAV MODERNIZATION 

The calculation was performed for a wing with MH32 
aerofoil (in calculations, wing “W 1”) and for a new wing with 
new geometry and SD7032 aerofoil (in calculations, wing “W 
2”). Wing W 1 is already applied to UAV R 4 (Fig. 2, Fig. 3), 
and the purpose of this calculation is to reveal the best 
geometry and aerofoil for the new wing. 

Key features of aerial vehicle R 4 used for the calculation: 
 maximum takeoff weight – 1550 g; 
 cruising speed – 55 km/h; 
 fuselage length – 1178 mm; 
 fin area – 1.80 dm²; 
 stabilizer area – 5.81 dm². 

 
Fig. 2. UAV – side view. 

 
Fig. 3. UAV – bottom view. 

A. Aerofoil Analysis 

Wing W 1 has aerofoil MH32 (Table I), and in the process 
of operating UAV R 4 the following features of UAV have 
been revealed: 
 the UAV has increased landing speeds, which hinders 

landing on a limited area without maneuvering for speed-
down. 

 the UAV has “sharp” stall speed boundary. 
 the UAV has unstable behavior at a design cruising speed 

(55 km/h); in the process of operating it has been revealed 
that the most favorable airspeed for target monitoring is 
60–65 km/h. 

 the UAV requires pitch trim when the engine power values 
range from average to maximum. 

During the statistical analysis, aerofoil SD7032 (Table II) 
was used for the new wing. 

For the initial calculation a comparative analysis of the 
polar curve of aerofoils MH323 and SD7032 was carried out; 
the calculation was made using value Re = 270 000, which 
corresponds to the aerofoil chord of 220 mm, flight speed of 
65 km/h and flight altitude of 100 m [5, 6]. 

TABLE I 

CALCULATION FOR AEROFOIL MH32 (FOR ANGLE Α) 

 

TABLE II 

CALCULATION FOR AEROFOIL SD7032 (FOR ANGLE Α) 

 

From the comparative analysis (Fig. 4, Fig. 5) it follows 
that: for aerofoil MH32 when α = 0°, value Cl = 0.3352; Cd = 
0.0076; Cl/Cd = 44; 
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for aerofoil SD7032 when α = 0°, value Cl = 0.4424; Cd = 
0.0078; Cl/Cd = 56.  

The lift-drag ratio of aerofoil SD7032 is higher for value α 
from 0° to + 4.5°. 

 
Fig. 4. The comparative diagram of polar curves for Cl from angle α and Cd 
from angle α. 

 
Fig. 5. The comparative diagram of polar curves for Cl/Cd from angle α and 
Cm from angle α= 0°. 

 
Fig. 6. Pressure distribution over the surface of aerofoil SD7032 when α = 0°. 

 
Fig. 7. Pressure distribution over the surface of aerofoil MH32 when α = 0°. 

From the analysis of the aerofoils (Fig. 6, Fig. 7) it follows 
that aerofoil SD7032 is more advantageous in terms of a lift-
drag ratio when the set-up parameters are applied [7]. 

B. Analysis of the UAV with W 1 

 
Fig. 8. Plan of wing W 1. 

Characteristics of wing W 1 (Fig. 8): 
 maximum span – 2010 mm; 
 root chord – 220 mm; 
 wing load – 72.524 g/ dm²; 
 MGC – 181.10 mm; 
 MAC – 192.17 mm; 
 wing area – 36.40 g/ dm². 

The calculation was made for an UAV model with the 
following characteristics (Fig. 9): 
 maximum takeoff weight – 1550 g; 
 cruising speed – 55 km/h; 
 fuselage length – 1178 mm; 
 fin area – 1.80 dm²; 
 stabilizer area – 5.81 dm2. 

UAV stabilizer has a conventional design; the calculation 
does not take into consideration the nacelle geometry. 

 
Fig. 9. UAV geometry for calculating wing W1. 

The initial calculation was made to reveal the general polar 
curve of the UAV and aerodynamic characteristics at airspeed 
V = 55 km/h (a design cruising speed) (Fig. 10, Fig. 11) [8]. 

When V = 55 km/h, the lift-drag ratio is Cl/Cd = 25; Cl = 
0.4594; Cd = 0.0177. 

A secondary calculation was carried out to reveal the 
general polar curve of the UAV when the wing lift was 
constant. 
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Fig. 10. Diagrams of the polar curve for UAV with wing W1. 

From the calculation it is seen that the moment of UAV 
stabilization Cm = 0 takes place at a speed V = 70 km/h; the 
angle of UAV attack becomes α = 0° at a speed V = 58 km/h; 
maximum lift-drag ratio Cl/Cd is reached at a speed V = 52 
km/h; maximum lift-drag ratio Cl/Cd occurs when α = 1.5° 
[9], [10]. 

 
Fig. 11. Picture of flow over wing W 1 at the airspeed of 55 km/h. 

C. Analysis of the UAV with Wing W 2 

 
Fig. 12. Plan of wing W 2. 

Characteristics of wing W 2 (Fig. 12): 

 maximum span – 2000 mm; 
 root chord – 230 mm; 
 wing load – 60.730 g/ dm²; 
 MGC – 218.63 mm; 
 MAC – 220.29 mm; 
 wing area – 43.73 dm². 

The calculation was made for an UAV model with the 
following characteristics (Fig.13, Fig.14): 
 maximum takeoff weight – 1750 g; 
 cruising speed – 55 km/h; 
 stabilizer area – 5.81 dm²; 
 fuselage length – 1178 mm; 
 fin area – 1.80 dm². 

UAV stabilizer has a conventional design; the calculation 
does not take into consideration the nacelle geometry. 

 
Fig. 13. UAV geometry for calculating wing W2. 

The initial calculation was made to reveal the general polar 
curve of the UAV and aerodynamic characteristics at airspeed 
V = 55 km/h (a design cruising speed) [1]. 

A secondary calculation was carried out to reveal the 
general polar curve of the UAV when the wing lift was 
constant [11]. 

Diagrams of the polar curve for UAV with wing W2 are 
shown below. 

 
Fig. 14. Diagrams of flow over wing W 2 at the airspeed of 55 km/h. 
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From the calculation it is seen that the moment of UAV 
stabilization Cm = 0 takes place at a speed V = 65 km/h; the 
angle of UAV attack becomes α = 0° at a speed V = 48 km/h; 
maximum lift-drag ratio Cl/Cd is reached at a speed V = 50 
km/h; maximum lift-drag ratio Cl/Cd occurs when α = 0°. 

 
Fig. 15. The lift-drag ratio at V = 55 km/h is Cl/Cd = 25; Cl = 0.5684; Cd = 
0.0225. 

V. CONCLUSIONS 

From Table III and Figure 16 it is seen that such parameters 
as minimum drag from velocity, wing power factor from 
velocity, minimum vertical speed from glide speed, and 
coming moment of UAV stabilization from the speed by wing 
W 2 have lower values in terms of airspeed than wing W 1. 
This makes it possible to conclude that wing W 2 will be more 
efficient at the design cruising speed of 55 km/h [12]. 

TABLE III 

COMPARATIVE CHARACTERISTICS OF WINGS W 1 AND W 2  

W 1 W 2 

Cl/Cd when  

V = 55 km/h 

25  Cl/Cd when  

V = 55 km/h 

25  

Cd from V 87 Cd from V 65 

Cd/Cd from V 53 km/h Cd/Cd from V 50 km/h 

Cl^(3/2)/Cd from V 58 km/h Cl^(3/2)/Cd from V 40 km/h 

Vz from Vx 45 km/h Vz from Vx 39 km/h 

Cm = 0 from V 70 km/h Cm = 0 from V 65 km/h 

 

Fig. 16. Calculation of UAV prototype aerodynamics. 

 

The calculation of power unit performance (Fig. 17) has 
shown that the flight time of the UAV prototype with 
increased takeoff weight is approximately 110 minutes, which 
fully corresponds to the set-up modernization parameter and 
even exceeds it [13]. 

 
Fig. 17. In-flight analysis. 

Flight predictions: 
 stall speed (m/s) – 10.1;  
 optimal flight speed (m/s) – 12.8;  
 throttle for optimal (%) – 69;  
 flight time (m:s) – 110:14;  
 motor temp at optimal (°C) – 37;  
 hands-off speed (m/s) – 14.6;  
 throttle for hands-off (%) – 77;  
 duration hands-off (m:s) – 105:30;  
 motor temp hands-off (°C) – 39;  
 best rate of climb (m/s) – 4.00;  
 rate of sink (m/s) – -0.87.  

According to theoretical calculations, the UAV prototype 
has undergone modernization, which includes manufacturing 
of new lifting surfaces (designed on the basis of theoretical 
calculations) and installation of a new power unit [14], [15]. 
The modernized UAV passed flight tests (Fig. 18) and 
demonstrated full compliance with the improved designed 
performance characteristics. 

 
Fig. 18. Modernized UAV prototype in flight. 
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Notations used in the calculations: 
 alpha α – angle of attack; 
 lift coef – lift coefficient; 
 viscous drag coef – pressure drag; 
 induced drag coef – induced drag; 
 total drag coef – drag (is equal to viscous drag coef + 

inducted drag coef); 
 total pitching moment coef – total pitching moment in 

relation to the centre of gravity; 
 total rolling moment coef – total rolling moment in 

relation to the centre of gravity; 
 glide ratio Cl/Cd;  
 wing ratio (Сy/Сx); 
 power factor Cl^(3/2)/Cd – wing power factor; 
 lift – lift force in newtons; 
 drag – drag in newtons; 
 Vx – velocity along axis x; 
 Vz – velocity along axis z; 
 descent angle atan (Cd/Cl) – angle of glide; 
 pitching moment – wing pitching moment in relation to 

the centre of gravity. 
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