Analysis of the Strapdown Inertial Navigation System (SINS) Error Genesis

Pjotrs Trifonovs-Bogdanovs, Anvar Zabirov

Abstract


Analysis and simulation of the Strapdown Inertial Navigation System (SINS) error genesis revealed that the East Feedback Contour has the greatest influence on the development of an error in this model, and angular velocity sensor is the critical element. In order to prevent the development of an error, structural correction in the East Feedback Contour, and elements that are more critical, namely in angular velocity measurement sensors is the best option.

Keywords:

Feedback loops; inertial reference system (IRS); SINS error model simulation; SINS simulink analysis; strapdown inertial navigation system (SINS)

Full Text:

PDF

References


P. Trifonovs-Bogdanovs, Basics of Inertial Navigation Basics. Riga, Latvia: RKIIGA, 1984.

D. Titterton and J. Weston, Strapdown Inertial Navigation Technology, 2nd ed. United Kingdom: The Institution of Electrical Engineers, 2005, pp. 1–55, 153–186, 263–274. doi: https://doi.org/10.1109/MAES.2005.1499250

M. S. Grewal, A. P. Andrews, and C. G. Bartone, “Fundamentals of Inertial Navigation”, in Global Navigation Satellite Systems, Inertial Navigation, and Integration, 3rd ed. New York, USA: Wiley, 2013, pp. 54–103.

P. D. Groves, “Introduction”, “Kalmas Filter-Based Estimation”, GNSS: User Equipment Processing and Errors”, in Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems. Artech House, 2013. pp. 1–20, 81–35, 349–386.

K. R. Britting, Inertial Navigation Systems Analysis, 3rd ed. New York, USA: Wiley, 2002, pp. 5–67, 72–120.

P. V. Bromberg, Theory of Inertial Navigation Systems. Moscow: Nauka, 1979.

SSJ-100 Maintenance Manuals. Sukhoi, Alenia Aermacchi, 2016, Chapter 34.

A. P. Sage, Optimum Systems Control, 3rd ed. Englewood Cliffs, NJ: Prentice-Hall, 2001, pp. 3–34, 45–51, 78–101.

V. V. Matveev, Osnovy postroenija besplatformennyh inercial'nyh sistem. Saint-Petersburg: Jelektropribor, 2009, pp. 15–77.

V. Branec and I. Shmyglevskij, Vvedenie v teoriju besplatformennyh inercial'nyh navigacionnyh sistem. Moscow: Nauka, 1992, pp. 56–67.

G. Fridlender, Inercial'nye sistemy navigacii. Moscow: Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury, 1961, pp. 17–29.

R. M. Rogers, Applied Mathematics in Integrated Navigation Systems, 3rd ed. AIAA, 2007, pp. 7–59, 73–101. https://doi.org/10.2514/4.861598

E. B. Magrab, B. Balachandran, and S. Azarm, An Engineers Guide to MATLAB. United Kingdom: Pearson Education, 2011, pp. 5–23.

P. I. Kattan, MATLAB for Beginners: A Gentle Approach. Petra books, 2013, pp. 9–21, 135–153, 153–167.

A. A. Sirota, Metody i algoritmy analiza dannyh i ih modelirovanie v MATLAB. BHV-Peterburg, 2016, pp. 7–115, 217–285.




DOI: 10.2478/tae-2018-0006

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Pjotrs Trifonovs-Bogdanovs, Anvar Zabirov

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.