Analysis of Ballast Water Treatment Technologies on Ships Operating in the Baltic Sea Region

Renāte Kalniņa, Alise Romule


The introduction of invasive aquatic species in new environments has been identified as one of the four biggest threats to the world's oceans causing serious threats and harm to both ecology and human health. There is a major exchange of ship’s ballast water over longer distances between continents and regional seas, and it has been known for decades that ballast water transfers organisms to new ecosystems, where the strongest, most aggressive and adaptable species can survive and become invasive under favourable conditions. The focus of the research is to study available ballast water control technologies to determine their suitability and effectiveness in the reduction of harmful aquatic organisms and compounds in the Baltic Sea.


Ballast water; ballast water treatment; Baltic Sea; invasive species

Full Text:



M. David and S. Gollasch, Global Maritime Transport and Ballast Water Management, Dodrecht: Springer, 2015.

LR, Likums par 2004. gada Starptautisko konvenciju par kuģu balasta ūdens un nosēdumu kontroli un pārvaldību. 20-Jun-2018. [Online]. Available: [Accessed: 19-Oct-2018].

Lloyd’s Register, Understanding Ballast Water Management. Guidance for shipowners and operators, 2017. [Online]. Available: [Accessed:12-Jun-2019].

S. Gollasch and E. Leppäkoski, Initial Risk Assessment of Alien Species in Nordic Coastal Waters, Copenhagen: Nordic Council of Ministers, 1999.

UNTAD, Review of Maritime Transport, Geneva: United Nations, 20182017.

IMO, RESOLUTION MEPC.288(71) (adopted on 7 July 2017) 2017 Guidelines for Ballast Water Exchange (G6). MEPC, 07-Jul-2017.

S. Strāķe and A. Ikauniece, Baltijas Jūra un Invazīvās sugas. Rīga: Latvijas Hidroekoloģijas Institūts, 2006

Baltic Sea Alien Species Database. [Online]. Available: [Accessed: 07-Jun-2018].

HELCOM Assessment on maritime activities in the Baltic Sea 2018. Baltic Sea Environment Proceedings No.152., Helsinki Commission, Helsinki, 2018. Available: [Accessed: 29-Jun-2019].

IMO, RESOLUTION MEPC.151(55) (adopted on 13 October 2006) 2006 Guidelines on Designation of Areas for Ballast Water Exchange (G14)’. MEPC, 13-Oct-2006.

L. A. Drake, Timothy P. Wier, Evan W.J. Parson, and Jonathan F. Grant, Recommendations for Evaluating Multiple Filters in Ballast Water Management Systems for US Type Approval, Chemistry Division, Naval Research Laboratory, Washington, DC, 2016.

M. Kļaviņš and P. Cimdiņš, Ūdeņu kvalitāte un tās aizsardzība, Rīga: LU Akadēmiskais apgāds, 2004.

R. C. Matousek, D. W. Hill, R. P. Herwig, J. R. Cordell, B.C Nielsen, N.C. Ferm, D.J. Lawrence and J. C. Perrins, “Electrolytic Sodium Hypochlorite System for Treatment of Ballast Water”, Journal of Ship Production, vol. 22, no. 3, pp. 160–171, 2006.

M. P. Badve, Mi. N. Bhagat and A. B. Pandit, “Microbial disinfection of seawater using hydrodynamic cavitation”, Separation and Purification Technology, vol. 151, pp. 31–38, 2015.

Yu L., Light Emitting Diode Based Photochemical Treatment of Contaminants in Aqueous Phase. PhD thesis, University of Calgary, 2014.

A. Šutka and M. Vanags, “α-Fe2O3/Ca2Fe2O5 photocatalyst system: synthesis and charge transfer mechanisms”, The 8th Tokyo Conference on Advanced Catalytic Science and Technology, 2018. [Online]. Available: [Accessed: 07-Jun-2019].

AlfaLaval, Ballast water management: An overview of regulations and ballast water treatment technologies, 2017. [Online]. Available: [Accessed: 21-Dec-2018].

N. Bellefontaine, F. Haag, O. Lindén and J. Matheickal, “Emerging Ballast Water Management Systems”, Proceedings of the IMO-WMU Research and Development Forum, 26–29 January, Malmö, Sweden, 2010. [Online]. Available: [Accessed: 08-Jun-2019].

DOI: 10.2478/tae-2020-0002


  • There are currently no refbacks.

Copyright (c) 2020 Renāte Kalniņa, Alise Romule

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.